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SOME COMMON-SENSE OPTIMIZATION TECHNIQUES FOR
NON-DIFFERENTIABLE FUNCTIONS OF SEVERAL VARIABLES

ABSTRACT:

~':\'.The problem of obtaining global optima of non-differentiable
functions of several variables is studied. In general, the func-
tions are multimodal and continuous on a compact domain. Two
distinct methods are proposed and to some extent compared: The
method of systematic search and the random search technigue. The
method of uniform saturation {the one variable version of the
systematic search method] is based on bisecting the interval (in
the one-variable case) repeatedly. Without loss of generality,
we may restrict the discussion to the closed unit interval
I= [0,1]. At the first stage, n = 1, bisect the interval I using

the point x = 1/2. Let My} = max [£(1/2),£(1)]. At the second

stage, n = 2, bisect each of the intervals [0,1/2] and [1/2,1] us-

L]

ing the points x = 1/4 and x 3/4 respectively. Let My =
[m),£(1/4),£(3/4)). By the nth stage we would have subdivided

the interval I into 2" subintervals, each of length (1/2)1, where-
in the partition points over and above those previous stages are

i(a/2)®, i =1,3,...,2%-1. Thus the M 's are inductively given by
M, = max[M,_;.f(i/2M); i = 1,3,...20-1]. It is now clear that Mp
is monotonic increasing sequence, M; < M; < My <. . . If we re-

peat the procedure enough times, we would "saturate" the interval

I by evenly spaced points in such a way that the distance between
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two neighboring points diminishes geometrically as n-increases.
Thus we "zero-in" on a solution of the problem. This method is
later modified to the case of functions of two or three variables.
The Random Search Technique used here determines all the
optimal points of the non-differentiable continuous functions with
many variables defined on compact domain. The procedure begins
with evaluating the given function at pre-determined number of
points selected randomly over the closed bounded domain. Suppose
m points are selected randomly over the domain and the function
is evaluated at each of the m points. The minimum functional
value and the point at which the minimum occurs (if the problem is
one of minimization) are saved. This step is carried out n
times, where n 1is sufficiently large. The resulting n points
will cluster around the minima. Suppose there are r cluster
points, then there is a possibility that around each cluster point,
a local minimum may exist. We develop a single program to find
all the cluster groups as well as cluster points using a local
optimization routine. Thus the global minimum is obtained by
simple comparison. The new method developed here is clearly an
improvement with regards to time and accuracy over the methods pro-

posed by Becker and Lago and Price's CRS procedure.
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INTRODUCTION

There are many optimization procedures which enable one to
determine the minimum of a unimodal function in n-space. If the
function is differentiable in a compact domain, global minima may
be obtained through the use of derivatives. However, the pro-
blem of global optimization of multimodal function has received
comparatively little attention, more so when the function in ques-
tion is non-differentiable. No efficient method has been developed
to tackle glcwal optimization problems.

As a general principle, the accuracy with which a procedure
locates optima improves with the number of functional evaluations.
In principle, however, one seeks a balance between a degree of
certainty and the cost of implementation. A procedure which lo-
cates optima with great precision and certainty would be practical-
ly worthless if it requires economically unfeasible number of cal-
culations.

There are several methods presently utilized to seek global
optimua; among them are those suggested by Brooks [l1], Becker and
Lago [2] and Price's CRS method [3]. The Simple Random Method ac-
cepts the optimum function value as global optimum after making a
specified number of trials randomly selected from the domain. The
stratified Random Search method divides the domain into a number
of subdomains of equal size and selects, at random, a trial point
from each subdomain and each time keeps the optimal function value.
The procedure is repeated a good many times. Some improvement on

the simple random search is provided by Becker and Lago. Their
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.. procedure begins with a Simple Random Search over the domain, in-
stead of retaining the single point with the optimal function
value, Becker and lago retain a predetermined number of points with
optimal function values in each trial. If the number of trials is
sufficiently high, the retained points tend to cluster around some
optima. Then a mode seeking algorithm is used to group the points
into discrete clusters and to define the boundaries of the sub-~
regions each embracing a cluster. The clusters are graded, by
searching in each for the retained points with the lowest function |
value and then rated according to the relative values of the clus-
ter minima. The entire procedure is then repeated using as the
initial search region that subdomain, defined by the mode seeking !

algorithm around the 'best' cluster. The user may choose to ex-

amine also the second best cluster, or indeed all clusters, accord-
ing to the extent of his doubt as to whether or not the global
minimum will be found in the subdomain defined by the best cluster.

The controlled Random Search (CRS) suggested by Price is

w2

similar to Becker and Lago, but CRS combines the random search and
mode-seeking algorithm into a single continuous process. But the

problems of inefficiency and economic consideration still remain.

METHOD OF SOLUTIONS

This paper deals with two methods: (I) Systematic Search (The

Method of Uniform Saturation), (II) Random Search. ~ In both cases

it is assumed that the functions are defined and continuous on a
: compact domain. They are also assumed to be multimodal functions.
In general the systematic search does not provide all the optimal

points, the primary emphasis here being location of a global optimum.
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Despite several restrictions and difficulties, the Random Search
method attempts to obtain all the optima, one optimum point in

each mode.

I. SYSTEMATIC SEARCH (The Case of Two or Three Variables)

Suppose f(x,y) is continuous on the closed unit square
s= {(x,y):0 < x,y < 1}. Then certainly a subdivision of the inter-
val [0,1] into, say, 50 equal subintervals would have to be con-

sidered as a reasonable partition. That is to say, 50 is a reason-

ably small number. Yet even with 50 partition points on each of
the x and y axes, we are faced with 50 x 50 = 2500 partition
points of the unit square §S. For the case of a function f(x) of
one variable, we certainly would want to partition the interval
[0,1] into MORE than 50 subintervals to get a reasonable assurance
that an optimum has been included. Hence we cannot be confident
that the global optimum will be among the values at the 2500 parti-
tion points of the square S.

The case of a function of three variables is much worse. Here
a subdivision of each co-ordinate AXIS into 50 partition points re-
sults in 50 x 50 x 50 = 125,000 points of the cube. This is just
to get a crude starting point. Hence we see that the number of
evaluations becomes prohibitive very rapidly and so, to have any
hope whatsoever of handling the multivariable case, we would have
to abandon the purely exhaustive scheme (Method of Uniform Satura-
tion) used in the univariable case.

The proposed method is based on two steps. The first step

involves consideration of an initial grid on the domain. An initial

S I i SV T T e Rty T



point is then obtained based on the grid. The second step starts
with the initial point and proceeds by the method of 'crossings’'.

Any direct search procedure such as the one presently given
would require a large number of evaluations. For a function f(x,y)
of two variables on a rectangle, we consider 100 partition points
on each of the x and y axes to be reasonable. This gives rise
to 100 x 100 = 10,000 partition points. We realize that 10,000
evaluations might not be cost-effective and that other more effi-
cient methods might be employable. The fact remains that this
procedure is direct, simple to execute and self-contained (not
based on other search procedures already in existence).

Several theorems pertaining to functions of two variables are
proved and some twenty one illustrative, computational examples are

provided. These examples comprise Tables 1, 2 and 3. The computer

programs are given in Appendix A.




The One-Variable Case: (The Method of Uniform Saturation)

Consider the non-linear programming (NLP) problem: MAXIMIZE
f(x) : a < x < b, where £ : I - R is a continuous real-valued
function defined on the closed interval I = [a,b]. Without loss of
generality, we may restrict the discussion to the closed unit in-
terval I = [0,1]. At the first stage, n = 1, bisect the interval
I using the point x = 1/2. Let M; = max {£(1/2),f(1)}. At the
second stage, n = 2, bisect each of the intervals [0,1/2] and
[1/2,1} using the points x = 1/4 and x = 3/4 respectively. Let

My, = max M;,£(1/4),£(3/4) . At the third stage, n = 3, bisect

each of the intervals {(0,1/4),{1/4,1/2}.,(1/2,3/4), and [3/4,1] us-
ing the points x = 1/8, x = 3/8, x = 5/8, and x = 7/8 respectively.
Set M3 = max{Mp,f(i/8) : i =1,3,5,7}.

By the n'th stage we would have subdivided the interval I in-
to 20 subintervals, each of length (1/2)%, wherein the new parti-
tion points over and above those of the previous stages are
i(r/2) : i =1,3,...,2% - 1. Thus the M,'s are inductively given
by M, = max {M,_;,£(i/2") : i = 1,3,...,2" - 1}. It is now clear
that M, is monotone increasing, viz. M} < My < M3 ... If we repeat
the procedure enough times, we would "saturate" the interval I by
evenly spaced points in such a way that the distance between two
neighboring points diminishes geometrically as n increases. Thus
we "zero in" on a solution of the problem. That is, if x, SOLVES
the problem, then there is a bisecting point xx WITHIN ANY PRE-

SCRIBED DISTANCE from x,. Thus if ¢ > 0 is preassigned, we are as-

sured of the existence of an xp for which |xx - x,| < ¢ whenever




n is such that 27 > 1/¢. Since the function f(x) is continuous,

we know that f(xy) will be close to f(x,) whenever xy is "suffi-

ciently" close to xq.

The Two-Variable Case

We next consider a real-valued function f(x,y) which is con-
tinuous on the closed unit square S = {(x,y): 0 < x,y < 1l}. The

non-linear programming (NLP) problem is: MAXIMIZE f(x,y) : (x,y) € S.

Theorem 1 Let f(x,y) be a real-valued function which is continu-
ous on a compact domain D. Then

MAXIMUM f(x,y) = MAX {MAX f(x,y)}, where for
(x,y)eD  xeDy,  yeDy

each fixed x, D, = {y : (x,y)e D} and for each fixed

Y Dy = x:{(x,y) € D}.

Clearly MAXIMUM f(x,y) > MAX {MAX f(x,y)}. Suppose
(x,y)eD xeDy yeDy

that the inequality is strict:

MAXIMUM f(x,y) > MAX {MAX f(x,y)}. Say
(x,y)eD xeDy yeDy

MAXIMUM f(x,y) = £(xg, Yo)

then f(xy, Yo) > MAX {MAX f(x,y)}

xeDy yeDx

MAX  f(xg, ¥)
YeDy

ol

f(xg, Yo), @
contradiction.
As a corollary, we have:
If £(x,y) is continuous on the closed unit

square S, then




MAXIMUM f(x,y) = MAX { MAX f(x,y)} =
(x,y)eS 0<x<l 0O<y<l

MAX {MAX f(x,y)}.
0<y<1l 0<x<1

We point out that the assumption of continuity cannot de

weakened to separate continuity as the following example shows.

Example 1

Theorem 2

Proof

xy/ (x4 + y4)  if (x,y) € S - (0,0)

f(x,y) =
0 if (x,y) = (0,0)

Let f(x,y) be continuous on the unit square S. For
each a ¢ [0,1], define h(a) = MAXIMUM f(a,y). Then the

function h: [0,1] » R is continuous.

Let a ¢ [0,1] and let € > 0 be given. Uniform con-
tinuity of f(x,y) implies the existence of 6§ = 8(eg) > 0
such that |f(a,y) - f£(x,y)|< ¢ whenever [x - a] < §.
Take x such that |x - a] < § and let the maximum of
f(a,y) over y occur at y and let the maximum of f(x,y)

over y occur at ?. That is, h(a) = MAXIMUM f(a,y) =
0<y<1

f(a,y) and h(x) = MAXIMUM £(x,y) = £(x,y).

0<y<1

Then |f(a,y) - f£(x,y)| < ¢ and |f(a,y) - £(x,y)| < ¢

fla,y) < £(x,y) + ¢ < £(x,y) + ¢ and f(a,y) - £(x,y) >-¢

£(a,y) - £(x,y) <e and f£(a,y) - £(x,y)>-¢.

Thus |f(a,y) - f(x,?)l < ¢ whenever |x - al < 8 or

|[h(a) - h(x)| < € whenever |x - a| < §. This shows

h: (0,1] - R is uniformly continuous on [0,1].
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8
The example cited earlier shows that the assumption of con-
k tinuity on f£(x,y) in Theorem 2 cannot be relaxed to separate con-
! tinuity.
Example 2
xy/ (x4 + y4)  if (x,y) € S - {(0,0)}
flx,y) = 0 if (x,y) = (0,0).
It is easily verified that here the function h(a) = MAXIMUM f(a,y)
0<y<1l
is given by:
3 if 0 <acx<l
4( 93 a2
h(a) =
0 if 0 = a. That is, h(a) is not

continuous at a = 0.
The next theorem appeared as Problem E 2854 and its solution

in the April 1982 issue of the American Mathematical Monthly.

Theorem 3 Let f(x,y) be a real-valued continuous function on the
unit square S = {(x,y) : 0 < x,y < 1}. Additionally,
suppose that for each a ¢ [0,1], the maximum of f(a,y)

over y occurs at ONLY ONE value of y, say MAXIMUM f(a,y)=
0<y<1

f(a,y*(a)). Then the assignment a b y*(a) defines a

continuous function y* : [0,1] » [0,1].

Proof The proof is by contradiction. Suppose y* is not con-
tinuous at some a ¢ [0,1]. Let {an} be a sequence in
[0,1] convergent to a such that by = y*(ap) fails to :
converge to y (a). Since {bp} is a sequence in a com- j

pact space, we may assume, without loss of generality,

i
1
v
\
’
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that {bn} converges to some number b £ [0,1] (otherwise we select

a convergent subsequence). Let f(a,y*(a)) - f(a,b) = €. Since

f(a,y*(a)) = MAXIMUM f(a,y) we see that f(a,y*(a)) > f(a,b); i.e.,
0<y<l

€ 0. The uniqueness of the maximum implies that € > 0. For if

fv

€ 0 then f(a,y*(a)) = f(a,b) or BOTH y*(a) AND b maximize f(a,y)
and y*{(a) = b, violating the assumed uniqueness of the maximum.
We have:
|£(a,y*(a))-f(a,b)| < |f(a,y*(a))-f(ay,by) | + [£(ay,by)-£f(a,b)|
= |h(a) - h(ay) | + |£(ay,by)-£f(a,b) |
where h is as defined in Theorem 2.

Theorem 2 together with the fact that a, + a implies that
In(a) - h(an)l < 1/2¢ whenever n is sufficiently large. Also, con-
tinuity of f£(x,y) together with the convergences a, +a and bn + b
implies lf(an,bn) - f(a,b)l < 1/2¢ whenever n is sufficiently large.
Thus taking n so large that BOTH 1l/2ec¢-inequalities hold simultane-
ously we obtain the following contradiction:

f(a,y*(a)) - f(a,b)| < 1/2¢ + 1/2¢
€ < E.

We acknowledge our gratitude to Dr. Charles Giel (formerly of A&T
State University) for the proof of Theorem 3 above.

In a private communification, Professor R. A. Struble of North
Carolina State University, gave the following solution to Problem

E 2854 and hence an independent proof of Theorem 3.

Alternate Proof of Theorem 3 (Direct Proof)

Let a [0,1] be given and let {a,} be a sequence in {0,1] such

a + a. We show y*(a,) + y*(a). The sequence {y*(a,)} is in the

P ST AREAPRND SRI
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compact space [0,l1] and hence we may assume that {y*(an)} is con-
vergent to some number b € [0,1] (otherwise we select a convergent
subsequence) . Continuity of f(x,y) implies that f(an,y*(an))-*f(a,b)
and f(a,,y*(a)) » f(a,y*(a)). From the definition by y*, it fol-

lows f(a ,y*(an)) > f(an,y*(a)). Thus
lim £(ap,y*(ap)) > lim f(a,,y*(a)) or f(a,b) > f(a,y*(a)). The

last inequality says b maximizes f(a,y) over y so that uniqueness
of the maximum now implies b = y*(a); i.e., y*(an) -+ y*(a).

The proof of Theorem 3 published in the American Mathematical
Monthly is shorter than either of the proofs given here; however
the published proof relies on a compact graph theorem and, in our
opinion is less instructive. Problem E 2854 asks if Theorem 3
may be generalized as follows. Suppose the reguirement of the
uniqueness of the maximum is no longer imposed and the function
y* : [0,1] » [0,1] is modified so that y*(a) = MIN {y:y maximizes
f(a,y)}. Does the assignment a » y*(a) define a continuous func-

tion y* : [0,1] » [0,1]? The answer is NO! The following counter-

example is given in the American Mathematical Monthly.

0 : a <1/2
1 :a>1/2

Example 3 .
f(x,y) = (x-1/2)(y-1/2). Here y (a)=

Professor J. G. Mauldron of Amherst College points out that
the function of Example 3 is unsatisfactory because it fails to
satisfy the uniqueness property miserably at a = 1/2 in the sense
that the set {y:y maximizes £(1/2,y)} = [0,1) and offers the follow-

ing example instead.

2 *
f(x,y) = (x-y)“. Here y (a) =

_El_aﬂlf_i {l:a<1/2

0 : a>1/2.

A& Al e
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11
For the function f(x,y) of Example 4, the departure from the
uniqueness condition is MINIMAL in the sense that the {y:y maximizes
f(a,y)} is a singleton for a ¥ 1/2, while the set {y:y maximizes
£(1/2,y)} = {0,1}.
Professor Mauldron offers the following example to illustrate
that the continuity requirement on f(x,y) in Theorem 3 cannot be

relaxed to separate continuity.

Example 5
y ifx=20
f(x,y) = 2
8y (x-y) /x if x ¥ 0
The function f(x,y) satisfies the uniqueness condition but is only
separately continuous. The induced function y*(a) is discontinuous
at a = 0:
1 if a =0
*
y (a) =
1l/2a if 0 < a <1
Looking at Examples 3 and 4, one may be tempted to conjecture that
y* : [0,1] » [0,1] enjoys the property of one-sided continuity.
Professor Richard Tucker of A&T State University gives the follow-

ing counter-example.

Example 6 f(x,y) : 0 < x<1/2, 0 <y <1
F(x,y) =
£(l-x,y) :1/2 <x<1,0<y<]1
where f(x,y) is as in Example 4 or f(x,y) = |x - y|.

l:0<ac<1l/2
Here y*(a) = 0 : a=1/2

1/2 < a < 1.




COMPUTATIONAL EXAMPLES

Aaron Chew wrote the BASIC programs for use on Texas Instru-
ments 99/4A personal computer with Extended Basic module and
Peripheral Expansion System. We express our deep appreciation to
Aaron for his programming assistance.

The TWO-VARIABLE PROGRAM is based on the following procedure.
Let f(x,y) be defined on the closed rectangle R = {(x,y):a < x < b;
€ <y <d. First use an Initial Grid on the rectangle obtained by
putting evenly spaced points on the sides of the rectangle lying on

the co-ordinate axes:

where x; = a + i(b-a) and y. = ¢ + j{d4-C¢) The procedure first
1 M J M

produces an initial approximation (x,y) based on the points

(xi,yj) of the initial grid. The Main Program then uses (x,y) as

STARTING POINT and procedes as follows. Fix x = x and minimize
f(x,y) over y ¢ [c,d] using evenly spaced partition of the type
used in the one-variable case; namely, evenly spaced points (1/2)N

apart. Say MIN f£(x,y) occurs at y = ;1. Next minimize f(x,?l)
Yy
over x £ [a,b], again using points that are (1/2)N apart. Say

,?2) as the second

MiN f(x,yz) occurs at x = X,. Refer to (x2

CROSSING. Repeat as often as desired.

12




II. RANDOM SEARCH

The domain of the function is closed and bounded and it will
always be possible to select the initial starting points at the
boundary. All the examples discussed here are of functions whose
domains are of the shape of hypercubes, aj < x; < bj. Therefore,

starting points may be taken as a i=1,2,3,... The next point

il
may be taken as aj + ¢, where ¢ = (b; - a )/N, if one decides to
use N points to obtain the first minimum. It is not really impor-
tant which formula is used to generate points over the domain, as
long as those domains are searched repeatedly without duplication.
We evaluate at the first N points just generated and store the
minimum and the coordinates of the minimizing point. We repeat the

procedure M times. Therefore, in all M minimum values are saved

together with the coordinates of the minimizing points. All the

generated points have to be tested whether they belong to the do-

s

main before they can be used. The essential features of the al-

gorithm are indicated in the flow~-diagram (Figure 1).

The M stored points should cluster around the minima. An il-
lustration of this concept is shown in Figure 2. The main task of
this procedure is to locate all the cluster groups. We have achiev-
ed only partial success in reaching this objective because of a pro-
blem described below:

If some of minima lie very near to each other, this procedure
cannot separate the clusters, because the radius of the hypersphere
which embrace these cluster points should be very small and there-
fore many points still remain outside of any hypersphere. These

points which are outside give false cluster groups and thereby in-

crease the function evaluations later tremendously. Let us take the
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following function as example: f(x;,x,) = (lel-l)2 + (Ix2|-2)2

'x < 4.

-4 <x P

1

There are four minima with function value f = 0 and coordinates
part and our procedure can obtain all of them very quickly. How-

ever, if f(x;,x;) = (|x| - 0.1)2 + (xy| - 0.5)2 this procedure

will lead to one minimum point only since all four points (0.1,0.5),

(0.1,-0.5),(-0.1,0.5) and (-0.1,-0.5) are lying on a very small
rectangle.

After separating the cluster the next biggest task is to find

|
|

the actual minimum in each cluster group. Any local optimizing f

method may be used. However, Nelder and Mead Simplex Search method
is the most efficient one for non-differentiable functions. We have
used Nelder and Mead Simplex Search method [4] in our program. The
Nelder and Mead Simplex Search requires m + 1 points for m-dimension-
al space and they may not lie on the same hyperplane. Therefore,
each cluster group, or the hyperspheres which embrace the cluster
groups must include at least m + 1 points to start the initial
simplex. So, not only is the counting of points necessary in each
cluster but also sometimes the points must be regenerated if the
points fall short.

The checking of collinearity is another important task in
Simplex Search method. If the simplex repeats itself for a specific
number of times, this has to be modified to prevent from collaps-
ing the simplex. One way to solve this problem is to replace a

point from the collapsing simplex by a point which lies on the or-

thogonal direction to the hyperplane.
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The Choice of the Number of Retained Points:

The number of retained points may depend on the size of the
domain and as well as the number of variables. Suppose we start
with fifty points; fifty functional evaluations are performed and
one point with lowest functional value is retained. If one wants
to retain 50 points, 2500 function evaluations are required. There-
fore, the number of function evaluations is very high where as stor-

age requirement is comparatively less.

Constraints:

All the global optimization problems may be regarded as con-
strained in the sense that the search is confined within the initi-
ally prescribed domain. If any point falls out of this domain,
that point has to be discarded. When additional constraints are
imposed, then, depending on the number and complexity of these con-
straints, a sufficiently large number of points has to be selected
to insure that a reasonable proportion of points from the totality
of trial points be included.

The program is written in FORTRAN IV and several examples are
discussed., Since we are using Simplex Search Method, the number of
dimensions must be more than one. The program is attached in Ap-
pendix B.

Example 1

The function to be minimized is

f(x,y,2) = (x -y + z)2 + (-x +y +z)2
+(x+y- 2?2,

-1<x,y,2z¢<1

e D o i
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It is easy to show that f is a strictly convex quadratic function
with an unique minimum at (0,0,0) and £ = 0.

After 2732 iterations, we have

£E=0
x =20
y=20
z =0

Actual values: £ =0, x=0,y =0, z2=20
The method of systematic search takes 12096 iterations to arrive
at this result.

In this connection it must be pointed out that in using the

systematic search method, we have tried to adhere to standardized

values for the number of initial grid points and the number of
crossings. Since the function is NON-NEGATIVE and the actual opti-
mal point is (0,0,0), the method of bisection would yield the
answer on the very first bisection (27 evaluations at most!). Hence
the computer operator would STOP the computer after ONLY 27 evalu-
ations because he sees that f already attains 0 [and can never be

improved] after 27 evaluations.

Example 2

This example is used to compare the result obtained by the
method systematic search (discussed in this paper, Example 19,
Table 3) and the actual values. The function is

f(x,y,z) = |x-1| + |y-1.5| + |6z-1].
0 <x,y<3,0c<1z<1.5.

Actual solution:

0

Min‘(f(XrYrZ)

x=1,y=1.5, 2 = 0.1666...
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By the Systematic Search Method:

Min(f(x,y,z) = 0.00390625

x=1, y=1.5, z = 0.16605625

Number of evaluations: 18752

By the Random Search Method:

Min(f(x,y,z) = 0.000001326

x=1,y=1.5 z=0.166667

.. e s . I

Number of evaluations: 3008
Example 3

As another example, let us take the following function which
was chosen by both Becker and Lago and Price's CRS algorithm (with
additional constraint):

f(xl,xz,x3) = 9-8x1-6x2-4x3+2x§+2x§

+x§+2xlx2+2xlx3

: 0 < X3x5<3, 0 < x3<1.5.
§ The actual solution is
£f =20, x3= 1, x3= 1, x3= 1. The Random Search method achieves

this solution in 2686 evaluations where £ = -0.1192x1t:‘06

x;3 =1, x = 0.9999, x3 =1
The method of systematic search takes 14144 evaluations.
Example 4

As a final example, we like to consider the following func-
tion to obtain all the four minima. Becker and Lago and Price also

discussed a similar function. Their function was 1

£x0xy) = (%] - 9% + (Ixy]- 52, 1

Price obtained all the four minima around 0(10‘6) after 5000
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-Actual minimum is of course 0 at all these four points.
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evaluations but not obtained the coordinates. We take
£(x1,%p.%3) = (Ix1] - 592 + (|xa] - 5)2
+ (x3 - 1)2
-10 < xj,%x3,x3 < 10.

All the four minima are obtained after 4010 evaluations:

Function Value Coordinates
~10
0.8298x10 Xy X, X4
0.244x1079 5.0 5.0 1.0
0.1591x10~2 -5.0 -=5.0 1.0
0.1699x109 -5.0 5.0

5.0 -5.0 1.0

The computer printout of the unified program is enclosed in

the Appendix B.

Conclusion:

The Random Search Method described in this paper is not really
a Random Search. Besides the initial point - generation technique,
everything later becomes more systematic than random. The methoQd
seems to be very efficient for problems wherever the Nelder and
Mead Simplex Search method applies. It suffers a serious setback
if some of the minima are very 'close’ to each other. How close is
very 'close'? This is an open question. One may use different lo-
cal optimization techniques to avoid this situation. The problem
of collapsing simplex may be handled as suggested in this paper.

Examining the program, one discovers that the storage require-

ment is not as great as it first appears. All the initial points

e e o a—————
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generated need not be saved. We need only to save the number of
retained points which actually form clusters.

The work on the Method of Systematic Search has generated some
mathematical theory and, it appears that more theoretical develop-
ments may be possible. Some of the advantages of the systematic
search method are:

(1) it is applicable to functions of a single variable
(2) it is direct

(3) it is easy to execute (the problems of simplicial collapse,
etc. do not appear)

(4) it is independent of other search procedures already in exis-
tence

(5) it goes after the global optimum without first calculating
local optima

{(6) it is not sensitive to 'nearness' of the local optima to each
other

The method suffers from the standpoint of being computational-

ly uneconomical in that the number of evaluations increases geome-
trically with an increase in the number of variables. Also the
method of systematic search does not, in general, obtain all the
local minima. This, in turn, may lead to some doubt as to where
the actual global minimum occurs.

This is a serious problem attributed to all procedures which
find global minimum without calculating derivatives such as the
method of Becker and Lago and Price's Controlled Random Search Pro-
cedure. However, the method of Random Search appears to overcome

this problem.

Summary of Most Important Results:

(a) The following three theorems have been established:

(1) Theorem l: Let f(x,y) be a real valued function which is

]
!
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Continuous on a compact domain D. Then

Max f(x,y) = Max Max f(x,y) where for each fixed x,
(x,y)eD xeDy yeDy

Dy = {y:(x,y)eD} and for each fixed y, Dy = {x:(x,y)eD}.

(2) Theorem 2: Let f(x,y) be continuous on the unit square S. For

each a ¢ [0,1], define h(a) = Max f(a,y). Then the function h:
0<y<1

[0,1] - R is continuous.

(3) Theorem 3*: Let f(x,y) be a real valued continuous function on
the unit square S = {(x,y):0 < x,y < l}. Additionally suppose that
for each a ¢ [0,1], the maximum of f(a,y) over y occurs at only
one value of y, say Max f(a,y) = f(a,y*(a)). Then the assignment

a —> yY*(a) defines a continuous function y*:(0,1] - [0,1].

(b) A complete program to find the various cluster groups of a
multimodal non-differentiable continuous function defined on a com-
pact domain and to pinpoint the minimum value of the function at

each cluster group using local optimizing technique is written.

List of All Participating Personnel:

l. Dr. Bolindra N. Borah, Professor, Department of Mathematics
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*This theorem appeared as problem E2854 and its solution in the
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PROGRAM ONE (VARIABLE) (See Example #1)

CONS = 1.E 20

INPUT "N" : N

INPUT "START & END POINT" : B,E

FOR X = B TO E STEP .5AN

A= 100*(X ~XA2)A 2 + [6.4*(X-.5)A 2 - X = .61A2 :: GOSUB 100
NEXT X

GOTO 110

IF A < CONS THEN CONS = A :: X0 = X :: PRINT "ANSWER"; CONS ::

PRINT "X"; X0 :: PRINT :: RETURN ELSE RETURN

110 END

CRY P R WA ATk onr SR
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20
30
35

45

55
60
65

66
70

71

ROW
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PROGRAM TWO (VARIABLE) (See Example #10)

Y = COLUMN

INPUT "INIT GRID?" : IG :: CONS = 1. E + 100
INPUT "CROSSING" : LOOP :: INPUT "N" : CUTTER :: INPUT

"ROW BEGINNING" : RB :: INPUT "ROW END" : RE INPUT

')

"COLUMN BEGINNING" : CB :: INPUT "COLUMN END" : CE
Rl = RB :: GOSUB 80
FOR L123 = 1 TO LOOP

FOR COL = CB TO CE STEP .5 A CUTTER :: ANSWER 100*

((COL-R1 A2) 2) + (6.4* ((COL - .5)A 2) - Rl - .6) A2 ::

GOSUB 65 :: NEXT COL

FOR ROW = RB TO RE STEP .5 ACUTTER :: ANSWER 100*

((C1 - ROWA2)A 2) + (6.4*((C1l - .5)A2 ~ ROW - ,6)A 2 ::
GOSUB 70 :: NEXT ROW

NEXT L123

GOTO 100

IF ANSWER < CONS AND Rl > COL AND COL + Rl < 1 THEN

CONS = ANS :: Cl = COL :: PRINT "ANSWER" ; CONS ::

PRINT "ROW" ; Rl :: PRINT "COLUMN" ; C1

RETURN

IF ANSWER < CONS AND ROW 2 Cl AND Cl1 + ROW < 1 THEN CONS
ANSWER :: Rl = ROW :: PRINT "ANSWER" : CONS :: PRINT

"ROW" ; Rl :: PRINT "COLUMN" ; Cl

RETURN

o e T e P
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Rl =

76
80

85

90
95
100

ROW
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PROGRAM TWO (VARIABLE) (Continued)

IF ANSWER < CONS AND ROW > COL AND ROW + COL < 1 THEN
CONS = ANSWER ::
: Cl = COL :: PRINT "ANSWER" ; CONS :: PRINT "ROW" ;

Rl :: PRINT "COLUMN" : Cl

RETURN
FOR COL = CB TO STEP (CE-CB)/IG
FOR ROW = RB TO RE STEP (RE-RB)/IG :: ANSWER = 100*

((COL-ROWA2)A 2) + (6.4* ((COL - .5) A2 - ROW - .6)A2
:: GOSUB 75 :: NEXT ROW

NEXT COL

RETURN

END
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PROGRAM THREE (VARIABLE) (See Example #19)

DEPTH; Y = COLUMN ; 2 = ROW

CONS = 1.E 10

CALL CLEAR

INPUT "INITIAL GRID" : IG

INPUT "ROW START & END" : RB,RE

INPUT "COLUMN START & END" ; CB,CE

INPUT "DEPTH START & END" : DB,DE :: INPUT "LOOP":L

INPUT "N" : N

FOR DEPTH = DB TO DE STEP (DE-DB)/IG

FOR COL = CB TO CE STEP (CE-CB)/IG

FOR ROW = RB TO RE STEP (RE-RB)/IG :: A = ABS (DEPTH-1) +
ABS (COL - 1.5) + ABS(6* ROW - 1) :: GOSUB 500 :: NEXT ROW

NEXT COL :: NEXT DEPTH

PRINT "OUT OF SUBPROGRAM"

FOR L1 =1 TO L

FOR DEPTH = DB TO DE STEP .5AN :: A = ABS(DEPTH - 1) +

ABS(COLO - 1.5) + ABS(6* ROWO ~ 1) :: GOSUB 600 :: NEXT DEPTH

FOR COL = CB TO CE STEP .5AN :: A = ABS(DEPTHO - 1) +
ABS(COL - 1.5) + ABS(6* ROWO - 1) :: GOSUB 700 :: NEXT COL
FOR ROW = RB TO RE STEP .5AN :: A = ABS(DEPTHO - 1) +

ABS (COLO - 1.5) + ABS(6* ROW - 1) :: GOSUB 800 :: NEXT ROW

PRINT L1
NEXT L1
END

S i e o PR TR
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PROGRAM THREE (VARIABLE) (Continued)

500 IF < CONS AND DEPTH + COL + 2* ROW < 3 THEN DEPTHO = DEPTH

:: ROWO = ROW :: COLO = COL :: CONS = A :: GOSUB 1000 ::

RETURN ELSE RETURN
600 IF A < CONS AND DEPTH + COLO + 2* ROWO < 3 THEN CONS = A ::

DEPTHQO = DEPTH :: GOSUB 1000 :: RETURN ELSE RETURN

700 IF A < CONS AND DEPTHO + COL + 2* ROWO < 3 THEN COLO = COL
t: CONS = A GOSUB 1000 :: RETURN ELSE RETURN
800 IF A < CONS AND DEPTHO + COLO + 2* ROW < 3 THEN CONS = A ::

ROWO = ROW :: GOSUB 1000 :: RETURN ELSE RETURN

1000 PRINT "ANSWER"; CONS: "DEPTH";DEPTH:"COLUMN";COLO:"ROW" ; ROWO

:: PRINT :: RETURN
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FIND ARSOLUTE MINIMUM OF NON-DIFFERENTARLE ROUNED
FUNCTION WITH OR WITHOUT CONSTRAINT
DIMENSION A(Z+50,50) yFMAX(S0) yCMAX(S0r3)sF(50+50)yCF (350>

MAX(S50y50) s X(S50) s Y(S50) s YMAX(S50»50) yCYMAX (509505 3) yFMAX1(
F(3)yCMAX1 (502 3) s CFAX(S5053)»CL1(S50+50) yFCL(50) »CFCL (5053

CMAX2(5053) yFMAX2(50) »CL (5055053 s 0(4) »
E(3)

N=20

I1=6

12=3
OFENCUNIT=20,FILE=*IN1.DAT’)
OFEN(UNIT=21,FILE='RES.OUT")
TUI=20

TU=5

READ' DOMAIN FARAMETER
READCIUT » %) (0CI) s I=1+6)

FORMAT(&FS5.1)
RAD=4
KOUNT=0

INITALIZE THE ARRAY

N=50

DO 7 K=1+12s1
A(Ky1,1)=D(K)

CALCULATE EFSILON VALUES

DO 8 I=1,12y1
E(I)=(D(I+3)-D(I))/50.0

GENERATE COORDINATES

DO 40 J=1sNs1

N0 30 I=1yN»v1l

N0 9 K=1,1I2s1

AKYIs J)=A(Ks 1o 1IR(~1)KKC(IRIKK)I+IRE(KIK(~1 ) XRT+IKE(KI X (-~
ERIHKRE (KX (—1) %K%K

CHECK IF EXCEEDS DOMAIN

DO 25 K=1+12»1

IF(A(Ky Iv J) sLEDC(K)) A(Ke I v J)=D(K+3)-JRE(K)
IF(A(Ky I ) oGE.D(K+3)) A(KyI» J)=D(K)+IXE(K)
CONTINUE

CALCULATE THE FUNCTIONAL VALUES

N1=J




—— L eman s et o et o 1 e

34
F'
04500 Ki=I
05000 F(Is)=CAL(AYK1,N1)
05100 KOUNT=KOUNT+1
05200 C WRITE(TIU»26) (ACKsIv 3) sK=1912) sF(Is 1)
05300 26 FORMAT (4Xs3(E10.4+4X) y4X»E10.4/)
05400 30 CONTINUE
05500 C
05600 C CALL SURROUTINES TO FIND MIN OF THE 50 FOINTS JUST EVALA
TED.
05700 C
05800 K=J
05900 I3=12
05000 CALL FMAXI(A»FsFMAXsCMAXsKsNyI3)
06100 C
06200 CALCULATION TO START NEXT SET OF FOINTS
06300 C
06400 A=
XP
06500 AJ=AJ/S0.
06400 00 35 K=1+12,1
06700 35 ACKs151)=A(Ks1s DHAIK(—-1) %K
06800 40  CONTINUE
06900 C
07000 C OUTPUT MINIMUN VALUE & COORDINATES
07100 C
07200 WRITE(IU»45)
07300 45 FORMAT(//»5Xs ‘VALUE OF THE FUNCTION’»SXs/FIRST COORDINAT
E’»5Xy ' SECOND
07400 1COORDINATE »S5X»  THIRD COORDINATE’ »/)
07500 00 SO0 I=1sN»1
07600 50 WRITECIUSSS) FMAXC(I) s (CMAX(IsK) »K=1512)
07700 55 FORMAT(SXsE11.5y5XsE11.5s5XsE11.5¢5XsE11.5)
07800 C
07900 C CALL FLOTTING ROUTINE
08000 C
*P
08100 DO 200 J=1r451
08200 JJ=4
08300 CALL MAX2(CMAX»FMAX s FMAX2sCMAX2s Ny JJsI2)
08400 GO TO (60+182+564+67)J ‘
08500 60 WRITE(IUy61)J
08600 61 FORMAT (10X’ GROUP‘sI3)
08700 WRITE(IUs65) FMAX2(J)» (CMAX2(JsK) 1K=1,12)
08800 65 FORMAT(S5XsE12.4vE12,4,E12.4yE12.4+/)
08900 GO TO 80
09000 62 WRITE(IUs61)J
09100 WRITECIUs65)FMAX2C(J) 9 (CMAX2(JsK ) sK=1412)
09200 GO TO 80
09300 64 WRITE(IUs61) J
09400 WRITEC(IUs6S5) FMAX2(.J)» (CMAX2(JsK) 1K=1,12)
09500 GO TO 80
09600 67 WRITEC(IUs61)
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WRITEC(IUyAS)IFMAX2(.J) » (CMAX2(JsK)sK=1+12)
K=0

DO 84 I=1yNs1
IF(FMAX(I).EQ.?.1E4+10)G0O TO 84
DIST=0.0

DO 81 KI=1,1I2s1
F(RKI)=CMAX2(JsKI)-CMAX(I+KI)
DIST=NIST+(P(KI)X%X2)
Q=SQRT(DIST)

IF(Q.GE.RADI) GO TO 84

K=K+1

FCL(K)=FMAX(I)

00 82 KI=1,I2s1
CFCL(KyKI)=CMAX(IKI)
FMAX(I)=9,1E4+10

D0 83 KI=1s1I2»1

CMAX(IsyKI)=9,1E+10
CONTINUE

K=K+1

FCL(K)=FMAX2(J)

DO 85 KI=1512s1
CFCL(KyKI)=CMAX2(JsKI)
FMAX2(J)=9.,1E+10

IF(K .EQ. 0.) GO TO 220
GO TO(101s2111,5123,131)J
K1=K

DO 106 I=1sK1is1
CL1CJsI)=FCL(I)
FCL(I)=0.

DO 105 KI=1,12,1
CL(JyIyRKI)=CFCL(I»KI)
CFCL(IsKI)=0,

CONTINUE

GO TO 200

K2=K

DO 116 I=1s,K2s1

CL1C(JyI)=FCL(I)

FCL(I)=0.

DO 115 KI=1,12,1

CL(JyIsKI)=CFCL(IyKI)
CFCL(IsKI)=0,
CONTINUE

GO TO 200

K3=K

DO 126 I=1sK3»1
CL1(JrI)=FCL(I)
FCL(I)=0.
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DO 125 KI=1,1I2,1
CLCJyIyKID=CFCL(IyKI)
CFCL(IVKI)=0,
CONTINUE

GO TO 200

K4=K

00 136 I=1+K4s1
CL1C¢Jy1)=FCL(I)
FCL(I)=0,

DO 135 KI=1s12,1
CLCJyIsKID=CFCL(IyKI)
CFCL(IyKI)=0.
CONTINUE

CONT INUE

WRITE THE FUNCTION-VALUE AND THE COORDINATES OF THE WHOL

IF(K1.EQ.0) GOTO 225

WRITEC(IUy222) K1

FORMAT(10X»* CLUSTER “»13)

D0 224 I=1sKisl

WRITEC(IUsX) CL1C1yI)s (CLC1yIsKI)sKI=1,1I2)
IF(K2.EQ.0) GOTO 230

WRITE(IUs2286)K2

FORMAT (10X ‘CLUSTER ‘»I3)

o 228 I=1,K2s1

WRITE(IUsX) CL1(29I)s(CL(2yI»KI)KI=1,1I2)
IF(K3.EQ.0) GO TO 235

WRITE(IU»232)K3

FORMAT(10Xs ‘CLUSTER ’+I3)

N0 234 I=1,K3»1

WRITE(IUsX) CLICIsI)»(CL(3vIsKI)sKI=1,12)

IF(K4.EQ.0) GO TO 240

WRITE(IUs236) K4

FORMAT (19Xs ‘CLUSTER ‘+13)

D0 238 I=1yK4,1

WRITEC(IUsX) CL1CAyI)y(CL(A»I»KI)/KI=1,12)

WRITE (IU»250)

FORMAT (SX» ‘MAX FUNCT ‘s5X» 'COORD TE-1‘»5X» ‘COORD TE-27y

‘COORD TE-3’9//)

KK=0

DO 350 J=1,4,1

GO TO (302s306¢310,314)J

IF(K1.EQ.0) GO TO 350

Ji=K1

I=J

ICOUNT=0

CALL SMPLEX(CL1sCLyCYMAXsYMAXyDyIsJ1sI2y ICOUNT)
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WRITE(IUy305)ICOUNT

FORMAT(2X» ‘GROUP ITERATION’»2X»I4)
KK=KK+ICOUNT

WRITE(IUy304) YMAX(Jr1) sy (CYMAX(Jy1yKI)yKI=1+1I2)
FORMAT(S5XsE10.4y3(6XyE1044)+//)

GO TO 350

IF(K2.EQ.0) GO TO 350

J1=K2

I=J

GO TO 303

IF(K3.EQR.0Q) GO TO 350

J1=K3

I=J

GO TO 303

IF(K4,.EQ.0) GO TO 350

J1=K4

I=1
GO TO 303
CONTINUE
KNT=KK+KOQUNT
WRITE(IU»3SS)IKNT
FORMAT(10Xs 'TOTAL ITERATION’»2Xy I5)
CLOSE(UNIT=20»FILE="IN1.DAT’)
CLOSEC(UNIT=21FILE="RES.QUT’)
STOF
END
SUBRROUTINE MAX2(CMAX3»FMAX3I»FAX2yCFAX2syMsL»II)
DIMENSION FAX2(S50) sCMAX3(S50¢3) +FMAX3(50) yCFAX2(S50+3)»TEM

I1I=3

PO 10 I=1sM»1
IF(FMAX3(I).GE.FMAX3(1)) GO TO 10
TEMP=FMAX3(1)

FMAX3(1)=FMAX3(I)
FMAX3(I)=TEMF

Do 5 K=1+3s1
TEM(K)=CMAX3 (1K)
CMAX3(1yK)=CMAX3(I+K)
CMAX3(IsyK)=TEM(K)
CONTINUE

CONTINUE

STORE THE CURRENT LOWER VALUE

FAX2(L)=FMAX3(1)
FMAX3(1)=9,1E+10

NO 12 K=193»,1

CFAX2(L yK)=CMAX3(1+K)
CMAX3(1sK)=9.1E+10
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RETURN

END

SUBROUTINE FMAXI(ByHsyFMAX1,CMAX1sL »N1yL 3)

DIMENSION R{(35350¢50) rH(50,50) yFMAX1(S50) »CHAX1(50,3) » TEM(

L3=3

DO 10 I=1sN1s1
IF(H(I L) .GE.H(1yL)) GO TO 10
TEMP=H(1,L)
H(1sL)=H(IsL)
H(IsL)=TEMP

NO S5 KK=1yL.3»1
TEM(KK)=R(KK»1,sL)
R(KKs1sL)=R(KKyI,L)
B(KKs I L )=TEM(KK)
CONTINUE

STORE THE CURRENT LOWEST VALUE AND COORDINATES

FMAX1(L)=H(1yL)

N0 12 KK=1513s1
CMAX1(LyKK)=BR(KKy1,L)
RETURN

END

LOCAL OFTIMIZATION USING NELDER AND MEADRS SMFLEX METHOD

SURROUTINE SMPLEX(ACL1»CACL1sCZMAXs»ZMAXsDRyL sy My I4,KOUT)
DIMENSION ACL1(S0/,50)+CACL1(S50+5053)yCZMAX(S50»50+3) » ZMAX

TEMPO(S0) yDD(S) ySUMZ(3) »X2(4+4) »SUM(3)
DIMENSION BST(454)sCRBST(454+y3)+»CR(4+3)+CF(4+3)yPIMG(4,3)

FCR(A4) sFPMG(4) sFCW(4) »FEX(4)sCUW(453)
DIMENSION X1(4)

DIMENSION EX(453)
RADD=0,00004

14=3

ITER=0,

N2=T4+1

1U=5

DO 3 I=1sN2y1
BST(L,I)=+.91E+10

DO 3 K=1yI4y1
CBST(LsIsK)=(+1)XXKX0.P1E+11
WRITECIUsX)BST(L»1)sBST(L+s2)¢yBST(L+3)9yRET(L»4)

FIND THE LOWEST POINT AND THE COORDINATES RST(L»1)

WRITE(IU»S) M
FORMAT(10Xy *THE NUMBER IS8 ‘+14)

e



00 10 I=1sMr1
IFACLIC(L,I) . EQ.0.91E+10) GOTO 10
IF(RST(Ls1) .LE.ACL1CL.»I)) GO TO 10
TEMP=RST(L+1)

BST(Ls1)=ACL1(L»I)

ACL1(L s I)=TEMP

N0 8 K=1y14,1
TEMPO(K)=CBST(L.s1+K)

CRST( (L1 yK)=CACLIC(LyIsK)
CACL1(L»IyK)=TEMPO(K)

CONTINUE

WRITEC(IUsX)RST(L1)

FIND THE SECOND REST
nO 20 I=1sMs1

IF(ACL1(LyI).EQ.BST(L+1)) GO TO 20
IF(ACL1C(LI) .EQ. 0.921E+10) GOTO 20
IF(RST(L»2) JLE.ACLL1CL,I))GO TO 20
TEMP=RST (L »2)

BST(L»2)=ACL1(L,I)

ACL1C(L» I)=TEMF

nog 16 K=15I4,1

TEMFO(K)=CBST(L»25,K)>
CRST(L»2sK)=CACL1(LsIsK)
CACL1(L»IsK)=TEMFO(K)

CONTINUE
WRITE(IUsX) BST(L»y2)

FIND THE THIRD LOWEST FOINT

DO 26 I=1M»1
IF(ACL1(L»I).EQ.BST(Ly1)) GO TO 26
IF(ACLIC(LsI)sea.bst(1+2)) d0 to 26
IFC(ACLICLY»I),.EQ.0.921E+10) GOTO 26
IF(RST.»3).LT.ACLIC(L»I)) 6O TO 26
TEMP=RST(L+3)

BST(Ls3)=ACL1C(LyI)

ACL1(L»I)=TEMP

00 25 K=1s14,1
TEMPO(K)=CRST(L +3»K)
CRST(L»3»yK)=CACL1(LyI »K)
CACL1(LsIsK)=TEMPO(K)

CONTINUE

WRITE(IUs%X) BST(L+3)

FIND THE FOURTH LOWEST POINT AT THIS TIME
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THE SIMPLEX FORMED BY RST(L»1)sRST(Ly2)sBST(Ls3)
BST(L»4) WHICH

30

31

35

36

39
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DO 29 I=1yMs1

IF(ACL1(L»I).EQ.BST(Ls1)) GO TO 29
IF(ACL1(LsI).EQ.BST(Ls2)) GO TO 29
IF(ACL1(L,I) . EQ.BST(Ly3)) GO TO 29
IFCACLIC(LsI).GE.EST(Ls4)) GO TO 29
IFCACLI(L,T) EQ. 0.91E+10) GOTO 29
TEMP=RST(Ly4) 1

BST(Ly4)=ACL1(L 1)
ACL1(L s I)=TEMF

DO 28 K=1,I4s1
TEMPO(K)=CBRST(L»4yK)
CRST(L»4,K)=CACL1(L»IsK)
CACLICLyTsK)=TEMFO(K)
CONTINUE

WRITE(IUsX) EBST(L»s4)

Py

IS THE RIGGEST ONE SHOULD RE REMOVED
WRITECIU»30) RBRST(Ls1)sRST(Ly2)sBST(Ls3)»RST(Lr4)

FORMAT(2XsF10.4s2XsF10.4+2XsF10.4+2X»F10.4)

SEE IF THE EXIT CRITERIA IS SATISFIED

DO 35 K=1sI451

SUM(K)=0.

0 35 I=1sN2»1
SUM(K)Y=SUM(K)+CRST(L s I»K)

D0 36 k=1s14y1

X1(K)=SUM(K)/4.

DIF=0,

DO 40 I=1sN2»1

DO 39 K2=1,I4»1

X2(IsK2)=CRST(LyIyK2)-X1(K2)

dif=dif+x2(ir,K2)%%2

CONTINUE

DIFB=SQRT(DIF)

ITER=ITER+1

IF(DIFB.LE.RADD) GO TO 500

WRITE(IU»43) DIFE

FORMAT (4Xs 'DIFFERENCE= ‘yE12.%)

REMOVE THE HIGHEST FROM THE SIMPLEX

THE HIGHEST POINT IS THE BST(L»4) 3
THE MEDIAN OF THE POINTS BST(L»1)sBST(Ls2)yRST(Ls»3) i
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DO 48 K=1y14»s1

SUM2(K)=0.

N3=N2-1

DO 46 I=1sN3»1
SUM2(K)=SUM2(K)+CHEST(LyI,K)
CP(LyR)>)=SUMR(K)>/3.

FIND THE IMAGE OF BST(L»4) THOUGH CF

DO 50 K=1»I4s1
FPIMG(LyK)=2,%CF(LsyK)-CBST(L»4yK)

CHECK IF EXCEEDS THE DOMAIN OF THE FUNCTION

N0 52 K=1+14»1
IF(PIMG(LyK) LT .ON(KY) PIMG(LyK)=DD(K)

IF(PIMGC(LsK) LGT.OO(K+3)) PIMG(LyK)=DD(K+3)
EVALUATE THE FUCTION AT THESE FOINTS

L3=L

M1=I4

FPMG(L)=XFCT(FPIMGyM1+L3)
KOUT=KQUT+1

write(iur34) femg(l)

FORMAT(4X» ‘FPMG='»E12,.4)
IF(FFMG(L) .LT.RSTC(_y1)) GO TO 200
IF(FPMG(L) .LT.RST(L»2)) GO TO 100
IF(FPMG(L) .GT.EST(L»4)) GO TO 40
D0 56 K=1s1451
CR(LyK)=(3IXCF(LyK)-CRST(L»4,K))>/2.,

CHECK IF EXCEEDS DOMAIN

DO 58 K=15K4s1
IF(CR(LsK),LT.DD(K)) CR(LyK)=DD(K)
IF(CR(LsK) 6T, DDN(K+3)) CR(LsK)=DD(K+3)

EVALURATE THE FUNCTION

M1=14

L3=L
FCR(L)=XFCT(CRsM1+L3)
KOUT=KO0UT+1
BST(L24)=FCR(L)

DO 59 K=1,14,1
CBST(L»4sK)=CR(LK)

eyt
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GO TO 400
DO 635 K=1,14,1
CW(L»K)=(CP(LsK)+CRST(L»4,K)) /2.

SEE IF EXCEEDS DOMAIN

RO 70 K=1+1I4-1
IFCCWLsK) LT, DIK)) CW(LK)=DI(K)
IF(CW(LyK) .GT. DD(K+3)) CW(LyK)=DD(K$+3)

M1=14

L3=L
FCW(L)=XFCT(CW,M1,L3)
KOUT=KOUT+1
BST(Ly4)=FCW(L)

D0 75 K=1,I4rs1

CRST(Ly4yK)=CUW(LsK)
GO TO 400
BRST(Ly4)=FFMG(L)

DO 110 K=1,s14s1
CBST(LsAsK)=PIMG(LsK)
GO TO 400

ng 220 K=1,I4+1
EXC(LyK)=3.0KCP(LsK)~2,0%kCRST(Lr4,K)

SEE IF EXCEEDS DOMAIN

DO 2G50 KS5=1sI4y1
IF(EX(LyKS) LT, DR(KSIIEX(LKS)=DR(KS+3)
IFCEX(LsKS).GT.DD(KS5+3))> EX(LyKS)=DD(KS5+3)

M1=14

L3=L
FEX(L)=XFCT(EXsM15L3)
KOUT=KOUT+1

IF(FEX(L).LT.BST(Ls1)) GO TO 310
WRITE(IU»255) FEX(L)

FORMAT(10Xr ‘FEX='yE10.4)
GO TQ 100
BST(Ly4)=FEX(L)

DO 320 K=1»I4,1
CBST(Ly49K)=EX(LsK)

DO 410 I=1yN2s1
IF(BSTC(Ls1).LT.BST(LsI)) GO TO 410
TEMP=BST(Ls1)

BST(L»1)=BST(L,yI)
BST(L,I)=TEMP
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48100 DO 405 K=1yI4»1
48200 TEMFO(K)=CRST(L»s1,K)
48300 CRST(L»1+K)=CRST(L,»I+K)
48400 405 CRST(LyI»K)=TEMFO(K)
48500 410 CONTINUE
48600 DO 450 I=2yN2,1
48700 IF(BRST(Ly2) LT.BST(L,I)) GO TO 450 |
48800 TEMP=RST(L»2) |
48900 BST(L»2)=HBST(L>»1) ‘
49000 BST(LyI)=TEMP
49100 Do 420 K=15I4s1
49200 TEMFO(K)=CRST(L+»2sK)
49300 CRBST(Ls2sR)=CRST(L»IsK)
49400 420 CRST(L»IsK)=TEMFO(K)
49500 450 CONTINYUE
494600 IF(BST(L¢3).LT.BST(Ls4)) GO TO 460
{4
49700 TEMP=BST(Ly3)
49800 BST(L»3)=BST(Ls4)
49900 RST(L»4)=TEMF
50000 [0 455 K=1+I4,1
50100 TEMPO(K)=CBST(L+3sK)
50200 CEST(Ls3yK)=CBST(Ls4sK)
50300 4355 CBST(Ly4sK)=TEMFO(K) y
50400 460 IFCITER.LT,.10.)GOTO 31
50500 ITER=0.
30600 BST(LyA)=(BEST(Ls1IH+BST(Ly2)+RET(L sy 3)+BST(L+4)) /49, |
50700 GO TO 400 1
50800 500 IMAX(Ly1)=RST(L»1) {
50900 DO 505 K=1,I4y1 ;
51000 505 CZMAX (L y1yK)=CBST(L 1K) :
51100 WRITE(IU»S10) ZMAX(L 1)y (CZMAX(L21sK)»K=1+I4) ]
51200 510 FORMAT(10XsE10.,4y3(E10.454X)y/) ;
L1 1
91300 RETURN :
91400 END
91500 FUNCTION XFCT(C»IXIsIF)
51600 DIMENSION C(4,3)
51700 11I=3
51800 XFCT=9,0~8,0%C(IFs1)~6.0KC(IF+2)-4,0%C(1
51900 1 Pe3)+2,0KC(IPy 1) XX242 ., OXCCIP»2)XX2+C(IF s 3) X%2
52000 2 AC(IPYLIXC(IPY2)X2,042.0%C(IPy1)IXC(IP»3)
52100 RETURN
92200 END
92300 FUNCTION CAL(C1sL3yN3)
52400 DIMENSION C1(3+50+50)
52500 CAL=9.,0-8.0%C1(1sL3yN3)-6.0%C1(2yLIsN3)-4,0RC1(3»L.IsNI)+
52600 1 2,0%C1(1yL3yN3)XRK2+2.0%C1(29L 3y NI)IRX24C1(3yL Iy N3) %X%2
52700 2 $2,0%C1C(15L3sNIIRCL(2sLIyN3I+2.,0%C1(15L.3yNIIXRCI(3yL.3¥N3)

52800 RETURN




